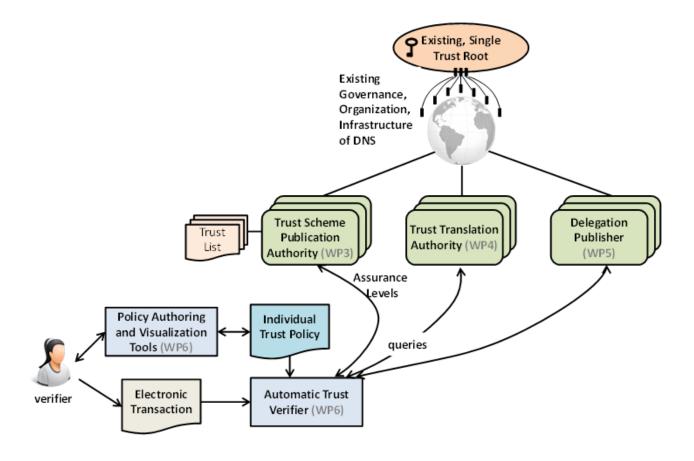
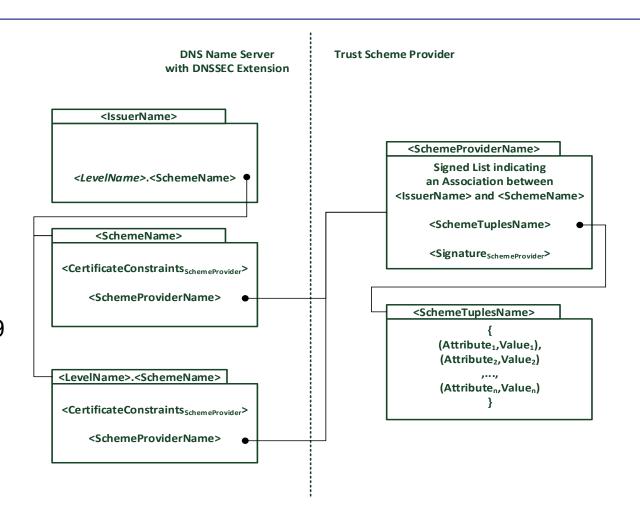
LIGHTest

A Lightweight Infrastructure for Global Heterogeneous Trust Management



Lightweight Infrastructure for Global Heterogeneous Trust management in support of an open Ecosystem of Stakeholders and Trust schemes

Reference Architecture of LIGHT^{est}

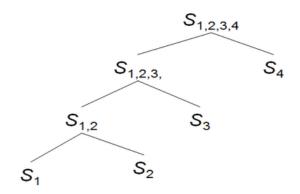

Trust Scheme Publication Authority (TSPA)

- Open Source Client Library and Server Tools (available on IAK Git) that aim to design
 - A conceptual framework to represent arbitrary trust schemes.
 - ■Trust schemes to be published/queried over DNS
 - ■The discovery of Trust Scheme Publication Authorities.
- Legal Toolbox, publicly available soon (M36 of the project),
 - ■Cross-Border Legal Compliance and Validity of this trust scheme publishing

Conceptual Framework for Trust Scheme of TSPA

- DNS Name Server
 - discovery of associated Trust Scheme and Trust Scheme Provider
- Trust Scheme Provider
 - signed trust list indicating issuer operates under the specific Trust Scheme (using existing standards on Trust Service Status Lists ETSI TS 119 612)
 - ■Tuple-based representation of Trust Scheme

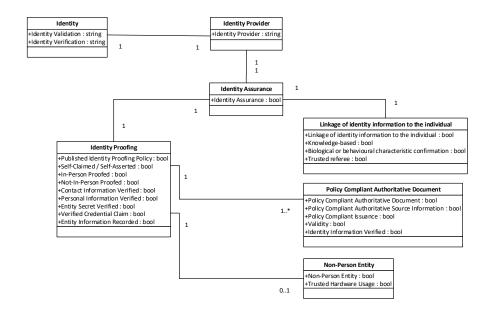
Publication of Trust Schemes

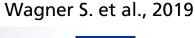

Type of Trust Scheme Publication	Example	Verifiable Information	
Boolean	ETSI_EN_319_401	Compliance of an entity to a trust scheme	
Ordinal	LoA4.ISO29115	Compliance of an entity to an ordinal value of a trust scheme	
Tuple-Based	{(authentication:2Factor), (identityProofing:inPerson)}	Requirements of a trust scheme	

Tuple-Based Trust Scheme Representation

- Bottom-up modelling approach
 - Consolidation of existing trust schemes
 - Conceptualization of data model
 - Development of data model
 - ■Tuples (attribute_name, attribute_value)
- Modelling of Tuple-Based Trust Schemes

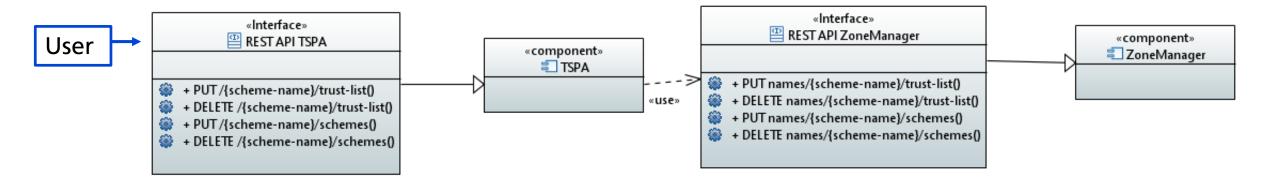
Input Scheme 1	Input Scheme 2	Consolidation Result	Saturation ΔS (min ΔS)
ISO/IEC 29115	PCTF	Data Model v0.2	n.a.
Data Model v0.2	FIDO	Data Model v0.4	3
Data Model v0.4	QAA/AQAA, eIDAS	Data Model v0.6	9
Data Model v0.6	Chinese eSig Law	Data Model v 0.6 (Data model of D3.1)	0
Data Model v0.6	Turkey eSig Law	Data Model v0.8	1
Data Model v0.8	MTF	Data Model	1
Data Model	Trust Scheme of Azerbaijan	Data Model	0
Data Model	UICC	Data Model	0


Wagner S. et al., 2019



Tuple-Based Trust Scheme Representation&Publication

- Data model
 - 27 concepts for Identity
 - 62 concepts for Credential
 - 9 concepts for Attributes
- 2 new constructs:
 - Authority Chain
 - Identity Provider



Tuple-Based Trust Scheme Representation&Publication

- Modelling of Tuple-Based Trust Schemes
 - Publication of Tuples of the generic Unified Data Model, e.g. CredentialBindingUsingDigitalSignatures>
 - Publication of Tuples-Based Trust Schemes
 - ■as part of the signed trust list
 - ■extra document with pointer from the trust list, e.g. <AdditionalServiceInformation>

DNS-based Trust Scheme Publication and Discovery

- Communication between components (DNS Name Server AND Trust Scheme Provider) for
 - Publishing Data using the TSPA: create, modify and delete Trust Schemes
 - Retrieving Data from the TSPA: querying process

Discovery of Trust Scheme Publication Authorities

- Example eIDAS Austria (with A-Trust as qualified trust service provider)
 - DNS query to discover trust scheme

```
;; QUESTION SECTION:
```

;_scheme._trust.a-trust.net. IN PTR

;; ANSWER SECTION:

_scheme._trust.a-trust.net. IN PTR _scheme._trust.nrca-ds.at

■DNS query to discover trust list

```
;; QUESTION SECTION:
```

;_scheme._trust.nrca-ds.at. IN URI

;; ANSWER SECTION:

_scheme._trust.nrca-ds.at. IN URI https://www.nrca-ds.at/st/TSL-XML.xml

Discovery of Trust Scheme Publication Authorities

- Example eIDAS Austria (with D-Trust as qualified trust service provider) ff
 - DNS query to discover certificate constraints

```
;; QUESTION SECTION:
```

; scheme. trust.nrca-ds.at. IN SMIMEA

;; ANSWER SECTION:

_scheme._trust.nrca-ds.at. IN SMIMEA <SMIMEA record data>

<SMIMEA record data> example

; certificate usage domain issued cert

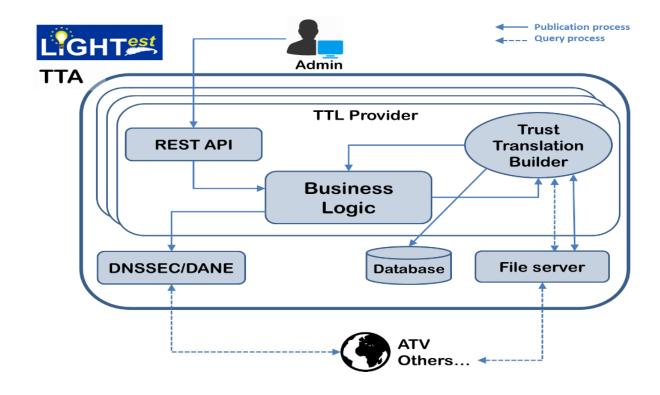
0 ; selector: full certificate

1 ; matching type SHA-256

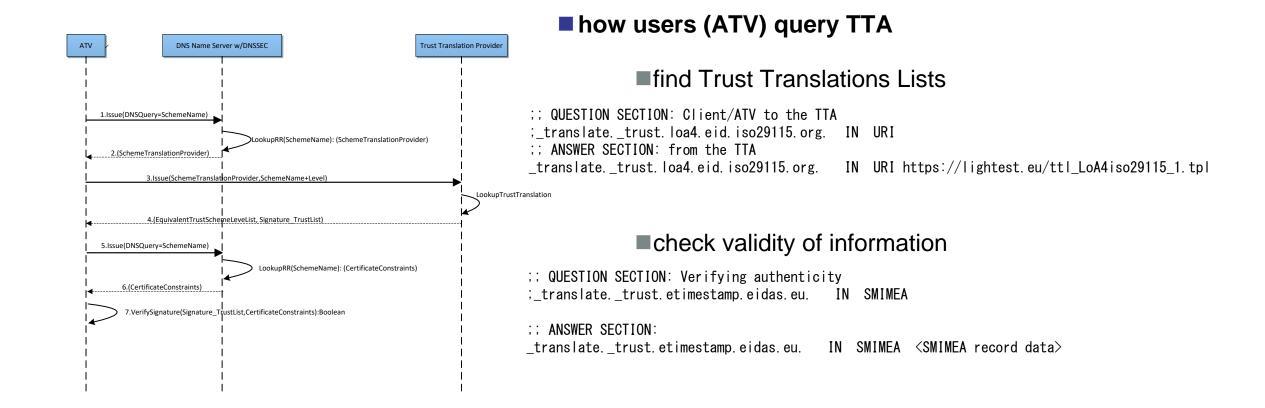
c70cd54924d4c9cf ; certificate association data

6ed20dc93c76aabb ...

defined in RFC6698 & RFC7218


Trust Translation Authority (TTA)

- Open Source Client Library and Server Tools (available on IAK Git) that aim to design
 - ■A conceptual framework to represent arbitrary trust translation schemes.
 - ■Trust translation schemes to be **published/queried over DNS**
 - ■The discovery of Trust Translation Authorities.
- Legal Toolbox, publicly available soon (M36 of the project),
 - ■Cross-Border Legal Compliance and Validity of these trust translations publishing


TTA subcomponents

Discovery of Trust Translation Authorities

Trust Translation Scheme Representation

- Translations in TPL and XML formats
- a ternary list of (trustPolicy, sourceSchema, targetSchema).

```
translate_identity(EIDAS, FIDOUAF_1_5) :-
    extract(EIDAS, schemename, eidas),
    extract(FIDOUAF_1_5, schemename, fidouaf_1_5),
    translate_qual(EIDAS, FIDOUAF_1_5).

translate_qual(EIDAS, FIDOUAF_1_5) :-
    extract(EIDAS, eIdentity_level, qualified),
    extract(FIDOUAF_1_5, userVerification, "Fingerprint"),
    extract(FIDOUAF_1_5, userVerificationUp, "5"),
```


Discovery of Trust Translation Lists

- Example: eIDAS eTimestamp
 - ■DNS query to discover trust translation lists
 - ■; QUESTION SECTION: Client/ATV to the TTA ;_translate._trust.etimestamp.eidas.eu. IN URI
 - ; ANSWER SECTION: from the TTA
 - https://lightest.eu/ttl_qualifiedTimestampEidas1.tpl
 - https://lightest.eu/ttl_qualifiedTimestampEidasN.tpl
 - https://lightest.eu/ttl_qualifiedTimestampEidas1.xml
 - https://lightest.eu/ttl_qualifiedTimestampEidasN.xml

Verification of the Signed Translation Lists

- Example elDAS eTimestamp
 - DNS query to discover certificate constraints

```
;; QUESTION SECTION:
```

;_translate._trust.etimestamp.eidas.eu IN SMIMEA

;; ANSWER SECTION:

;_translate._trust.etimestamp.eidas.eu IN SMIMEA <SMIMEA record data>

<SMIMEA record data> example

; certificate usage domain issued cert

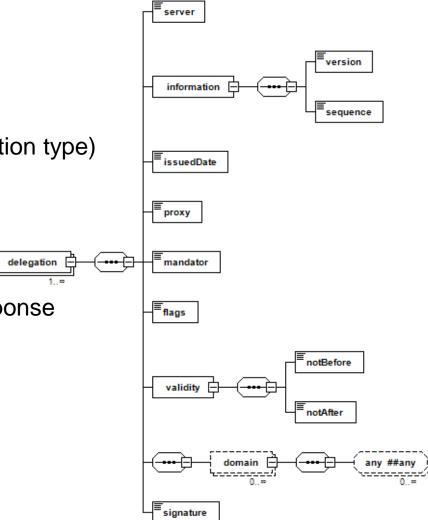
0 ; selector: full certificate

i matching type SHA-256

c70cd54924d4c9cf ; certificate association data

6ed20dc93c76aabb ...

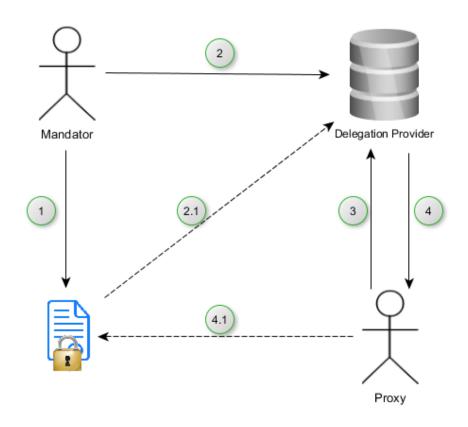
defined in RFC6698 & RFC7218


Delegation Provider

- Open Source Client Library and Server Tools (available on IAK Git) that aim to design
 - A conceptual framework to represent delegations
 - Delegations to be **published/queried**
 - ■The discovery of Trust Translation Authorities.
- Legal Toolbox, publicly available soon (M36 of the project),
 - ■Cross-Border Legal Compliance and Validity of this delegations publishing

Design of a Conceptual Framework for Delegations

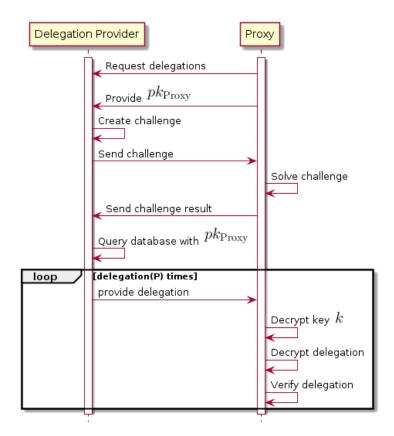
- Views on different projects and scientific publications
- Defines possible types of delegations (bilateral, substitution, delegation type)
- Data format defined
- Revocation of a delegation
 - ■Revocation with OCSP
 - Delegation Provider gets a delegation to sign the OCSP response



Design of Publication of Delegations

Mandator

- ■Creates delegation
- Signs the delegation
- ■Creates encryption key for the delegation
- ■Encrypts generated key with Proxy's public key
- Uploads delegation and encryption key to delegation provider



Discovery of Delegations

- Proxy
 - Requests delegations
 - Provides public key
- Delegation Provider
 - ■Generates challenge
 - ■Sends challenge to proxy
- Proxy
 - ■Solves challenge
 - ■Sends result back
- Delegation Provider
 - ■Sends delegations to Proxy

How to Integrate and Test Components

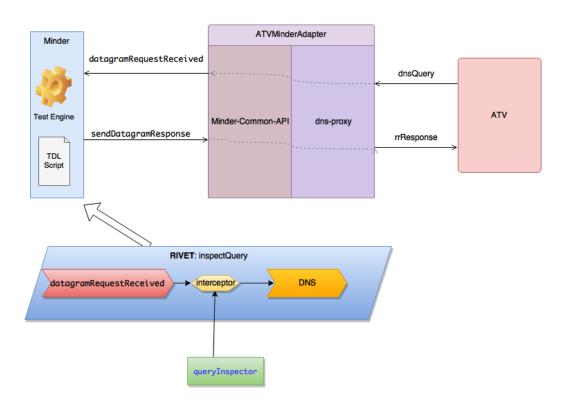
- Sources can be obtained via IAIK GitLab at https://extgit.iaik.tugraz.at/LIGHTest/
- Each component uses/provides a REST API
 - TSPA to handle Trust Schemes that
 - Passes the information to the DNS server to create/update/delete entries
 - Stores the Trust Scheme information
 - ■TTA to handle Trust Translation Schemes that
 - Passes the information to the DNS server to create/update/delete entries
 - Stores the Trust Translation Scheme and Aggreement information
 - **■**DP
 - ■To create/update/delete entries
 - Stores delegation data

Integration and Conformance Testing of components in LIGHT^{est}

- Main objective
 - ■Render all LIGHT^{est} components mature and robust in order to reach TRL7.
 - ■Performs evaluations whether the products are in compliance with the defined specifications
- Iterative approach
 - ■3 iterations are held
- Automated testing using Minder

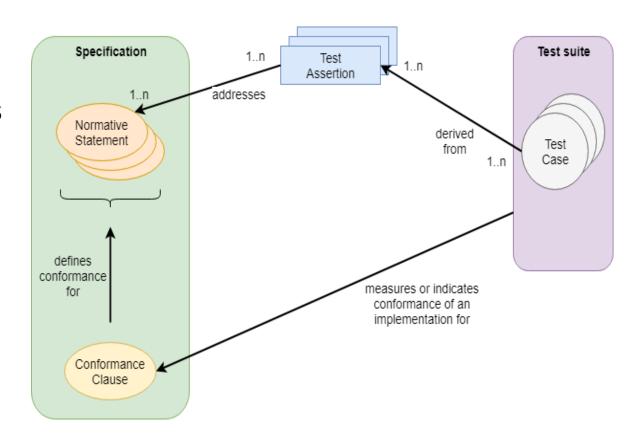
How to Integrate and Test Components

- Minder Conformance and Interoperability Testbed is used for the testing architecture
- Implemented in e-SENS EU Project
- Open Source Testbed confirmed by CEF and available on:
 https://joinup.ec.europa.eu/solution/minder-conformance-and-interoperability-testbed
- Ability to create-group-edit-execute test stories (or more formally test assertions converted to test cases) and inspect and publish reports and logs
- Minder Test Definition Language (MTDL, an extensible SCALA-based scripting language) including the use of external Java library dependencies

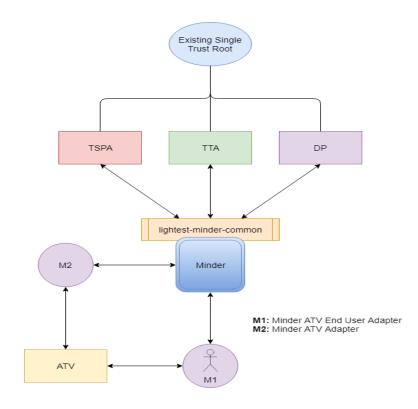


How to Integrate and Test Components

- Minder is compliant with GITB (Global e-Business Interoperability Test Bed methodologies)
- Focuses on methodologies and architectures that support e-business standards assessment and testing activities from early stages of business standards development from:
 - implementation and
 - ■Implementation → deployment of large-scale solutions.



Integration and Conformance Testing of components in LIGHT^{est}


- Automate
- Testing Methodology is based on OASIS
 Test Assertion Model

Minder Testbed Applied Architecture

- The architecture&scenarios based on the design documentation is base on
 - Querying of Trust Scheme Membership
 - Querying of Trust Translation List
 - Discovering of Trust Delegation
 - Publishing of Trust Delegation Test Scenario
- Minder Test Manager is implemented to handle test case and suite execution

Conformance and Interoperability Testing Iterations

TSPA

- 18 Normative Statements:
- 11 Test Assertions derived from normative statements
- 20 Test Cases derived from assertions

■ TTA

- 15 Normative Statements
- 15 Test Assertions
- 25 Test cases

DP

- 13 Normative Statements
- 15 Test Assertions
- 18 Test cases

Conformance and Interoperability Testing in Summary

- Technical Infrastructure Setup DNS with DNSSEC setup for the components
- Deployment and Integrating of LIGHT^{est} components for testing
- Test Assertions and Test Cases extraction from:
 - ■Use cases = Integration Test
 - ■Requirements = Conformance and Interoperability Tests
- Test Executions and Report Generations
- Defect correction and Re-Execution of Tests automatically with minimum effort

Contact Us

www.lightest-community.org info@lightest-community.org www.linkedin.com/groups/12017516 COMMUNITY @LIGHTest_trust

